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6 Linear Recurrent Networks: Integrators and

”Line Attractors”

6.1 A brief background of recurrent connections in brain
networks

The storage of memories in the brain is an old and central issue in neuroscience.
It was known from the world of digital logic that simple memory devices, like a
flip-flop, could use feedback to hold electronic summing junctions in a particular
state after their inputs had decayed away. These are bistable devices formed from
threshold elements. It was conjectured that networks with many summing junctions,
or neurons, might be able to store a multitude of states if the feedback was extended
across all pairs of cells, i.e., order N2 connections across N neurons. What are the
expected motifs for such circuits? By extension the idea of flip-flops, we might
expect to find regions with neurons with axon collaterals that feed back to other
neurons - all other in the best of worlds. These were highlighted in the perform
cortex of the olfactory system by Haberly.

FIGURE - PIRIFORM CORTEX

They were also highlighted my many researchers for the CA3 region of hippocampus.
This region is known for the occurrence of place cells. In their simplest substantiation
these are neurons that fire only when the animal reaches a particular location in the
local environment, like a box. Different cells in CA3 prefer to spike in different
locations. Thus the animals builds up a map of the space, and in principle can use
this map to determine a path to move from one location to another.

textbfFIGURE - HIPPOCAMPUS FIGURE CA3 - FEW PLACE FIELDS

So we have an idea - the use of feedback to form memories of places, or of anything
by extrapolation, and we have biological motivation in terms of the anatomical
evidence for recurrent networks. Let’s start with the simplest system, one neuron.
And a linear neuron to boot!

6.2 Positive feedback and the single neuron

Our formalism is in terms of the rate of spiking of the cell. We are dealing with
linear modeling at this point so we can associate the spike rate as a linear function of
the underlying potential. As such, we write differential equations directly in terms
of the rate, which we denoter(t),

τ0
dr(t)

dt
+ r(t) = h(t) (6.6)
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where h(t) is an external input to the cell normalized in term of rate. This is the
same equation for an ”RC” circuit in electronics and can be readily solved, for which

r(t) = r(0)e−t/τ0 +
∫ t

0
dxe−(t−x)/τ0h(x). (6.7)

When the input is a constant, i.e., h(t) = h0, the rate will change toward that
constant according to

r(t) = r(0)e−t/τ0 + h0(1− e−t/τ0). (6.8)

The problem is that this circuit has no memory of the initial rate, r(0) or for that
matter the rate at any past time, such as just after a transient input. How can we
achieve memory? We consider the addition of positive feedback, where the strength
of the feedback is set by w. Our rate equation is now

τ0
dr(t)

dt
+ r(t) = wr(t) + h(t) (6.9)

τ0
dr(t)

dt
+ (1 − w) r(t) = h(t) (6.10)(

τ0
1 − w

)
dr(t)

dt
+ r(t) =

h(t)

1 − w

and we see that the time constant is no longer τ0 but τ0
1 − w

. When w approaches a
value of w = 1 from below, that is, from zero, we see that the effective time constant
is very long. In fact, when w = 1 it is a perfect integrator with

r(t) = r(0) + h0

(
t

τ0

)
. (6.11)

Of course if the input is present for only a brief time, say T , the output just shifts
from r(t) = r(0) to r(t) = r(0) + h0

(
T
τ0

)
.

The good news is that we built an integrator - and thus a memory circuit - with
linear components and positive feedback. The bad news is that w needs to be very
close to w = 1 for the feedback to appreciably extend the time constant. Thus
an extension from τ0 = 100ms to τ = 10s, as in the Robinson experiments on the
stability of eye position, requires w = 0.99. A little variability that causesw to
creep up to w = 1.01 will lead to an unstable system.

FIGURE - AREA 1 PREMOTOR NUCLEUS

6.3 Stability in a rate based linear network

We learned that a single neuron can function as an integrator. Can we achieve the
same behavior in a recurrent network? Is the stability requirement similar, or does
the interconnectivity of the network somehow ease the issue. Unlikely, because a
coupled linear system of N variables can be transformed to N uncoupled systems,
but let’s see.

2



τ0
dri(t)

dt
+ ri(t) =

N∑
j=1

Wi,j rj(t) + hi(t) (6.12)

In vector notion, this becomes

τ0
d~r(t)

dt
+ ~r(t) = W~r + ~h(t) (6.13)

and in steady state, for which ~r∗ ≡ ~r,

0 = (I−W) ~r∗ + ~h0 (6.14)

or

~r∗ = (I−W)−1 ~h0 (6.15)

Is this a stable steady state solution? To address this, we consider a perturbation
about ~r∗ and write

~r(t) = ~r∗ + δ~r(t) (6.16)

Thus

τ0
d~r∗

dt
+ τ0

dδ~r(t)

dt
+ ~r∗ + δ ~r(t) = W~r∗ + Wδ~r(t) + ~h0 (6.17)

so that

τ0
dδ~r(t)

dt
= − (I−W) δ~r(t). (6.18)

Let us solve this in terns of the eignevectors of W rather than in terms of the
individual δri. In general,

W~µi = λi~µi (6.19)

where the ~µi are eigenvectors and the λi are the eigenvalues. Then

δ~r(t) =
N∑
i

[δ~r(t)]i ~µi (6.20)

where the [δ~r(t)]i ≡ δ~r(t) · ~µi are expansion coefficients. Then

N∑
i=1

(
τ0
d [δ~r(t)]i

dt
+ (1− λi) [δ~r(t)]i

)
~µi = 0 (6.21)

so that except for the trivial cases ~µi = 0 we have(
τ0

1− λi

)
d [δ~r(t)]i

dt
+ [δ~r(t)]i = 0 (6.22)

3



for each term. The system is stable if λi ≤ 1 ∀i. The largest eigenvector, taken as
λ1 is the integration mode if it has the largest eigenvalue at λ1 = 1. The other
modes will decay away, and suggest the need for λi << 1 for i 6= 1.

We now return to the full system and write down a general solution for ~r(t) in
terms of the eigenmodes. Let

~r(t) =
N∑
i

[~r(t)]i ~µi (6.23)

and

~h(t) =
N∑
i

[
~h(t)

]
i
~µi (6.24)

where [~r(t)]i ≡ ~r(t) · ~µi and
[
~h(t)

]
i
≡ δ~h(t) · ~µi are time dependent expansion

coefficients. Then the original equation of motion

τ0
d~r(t)

dt
+ ~r(t) −W~r(t) + ~h(t) = 0 (6.25)

can be written in terms on a differential equation for each eigenmode, i.e.,

N∑
i

(
τ0
d [~r(t)]i
dt

+ [~r(t)]i − λi [~r(t)]i −
[
~h(t)

]
i

)
~µi = 0 (6.26)

for which each of the individual terms must go to zero. Thus the effective time
constant for the i = th mode is

τeffective
i =

τ0
1− λi

. (6.27)

We can immediately write down the solution for the coefficients for each mode as

[~r(t)]i = [~r(0)]i e
−t(1−λi)/τ0 +

∫ t

0
dx e−(t−x)(1−λi)/τi

[
~h(x)

]
i
. (6.28)

For the special case of λ1 = 1 and Re{λi} < 1 for i > 1, the dominate mode is also
a stable mode, with a firing pattern proportional to ~µ1 , that acts as an integrator,
i.e.,

[~r(t)]1 = [~r(0)]1 +
∫ t

0
dx

[
~h(x)

]
1
. (6.29)

This gives us an idea for eye movement. Here we want all of th modes except
the integrator mode to decay quickly, i.e., λ1 = 1 and Re{λi} � 1 for i > 1

FIGURE - EIGENSPECTRUM WITH A GAP BETWEEN STATE
AT λ = 1 AND STATES WITH λ << 1

We assume that eye position, denoted θ(t), is proportional to a single firing
pattern, which makes good sense when that pattern is stable and all others rapidly
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decay. In fact, this concept makes good sense for any motor act that requires
extended stability, such as posture. With reference to angular position, we write

θ(t) = G [~r(t)] · ~µ1 + θ0 (6.30)

= G [~r(t)]1 + θ0 (6.31)

= G
∫ t

0
dx

[
~h(x)

]
1

+ G [~r(0)]1 + θ0

where G is a gain factor and θ0 is the baseline position of the eye. One could add
all kinds of baseline rates, but this just ofiscates the story. The key is that the eye
position now follows the integrator mode.

This model is called a line attractor. The name was coined since the stable
output is proportional to a single vector, ~µ1 , but the continuum of points along
that vector forms a line in the N-dimensional space of firing rates of the different
cells. Changes to [~r(t)]1 that result from inputs along the direction of ~µ1 are along
the line. Inputs that are orthogonal to this line rapidly decay so the system returns
to the line.

FIGURE - LINE ATTRACTOR LANDSCAPE

FIGURES - PREMOTOR NUCLEUS DYNAMICS

6.4 Absence of multistability in linear recurrent networks

Before we move on to non-linear network, we consider the question of how many
stable patterns a linear network can support. The results of the integrator suggest
only one memory, but let’s see if we can get a general proof.

We consider a network with a symmetric weight matrix, W, i.e., a matrix of
synaptic connections so that Wi,j is the strength of the input to cell i from the
output of cell j. The neurons act as linear devices, i.e., the output of the cell is
a linear function of the input. This clearly is not the case for cells that vary from
quiescent to spiking as a function of their input, but could be the case for cells whose
spike rate is uniformly and monotonically modulated up and down. It is also the
case for networks of cells with solely graded synaptic release.

Since we are working in the linear regime, we again ignore the difference between
cell potential and firing rat and write the input to the cell as

ri(t) =
N∑
j=1

Wijrj(t) (6.32)

where N is the number of neurons. We assume a parallel, clocked updating scheme,
in which we explicitly note the time steps, i.e.,

ri(t+ 1) =
N∑
j=1

Wijrj(t). (6.33)
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In vector notation, this is

~r(t+ 1) = W ·~r(t) (6.34)

Now we can iterate, the synchronous equivalent of recurrence, starting from time
t = 0:

~r(1) = W ·~r(0) (6.35)

~r(2) = W ·~r(1)

~r(3) = W ·~r(2)

·
·

~r(n+ 1) = W ·~r(n)

This becomes

~r(n) = Wn ·~r(0) (6.36)

Now we recall that W satisfies an eigenvalue equation;

W · ~µk = λk~µk (6.37)

where k labels labels the eigenvalue and for a real symmetric W we have 1 < k < N
if we ignore potential degenerate eigenvectors. We can rotate the symmetric matrix
W by a unity transformation that preserves the eignenvalues, i.e.,

W = UΛUT (6.38)

where U is a unitary matrix defined through U ·UT = I. The diagonal matrix Λ
contains the eigenvalues along the diagonal, such that

Λ =



λ1 0 0 · · ·
0 λ2 0
0 0 λ3
·
·
·


Clearly the rotated eigenvectors, UT~µ, are of the form

UT~µ1 =



1
0
0
·
·
·


UT~µ2 =



0
1
0
·
·
·


· ··
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since W · ~µk = λk~µk implies Λ ·UT~µk = λkU
T~µk so the UT~µk are the eigenvalues

of the diagonalized (rotated) system.
Now we can go back to the iterative expression for ~r(n).

~r(n) = Wn ·~r(0) (6.39)

=
(
UΛUT

)n
·~r(0)

= UΛnUT ·~r(0)

where we used

(
UΛUT

)n
= UΛUTUΛUT · · ·UΛUT (6.40)

= UΛnUT

Thus

UT ~r(n) = Λn UT~r(0) (6.41)

But the diagonal matrix Λn, when rank ordered so that λ1 is the dominant eigen-
value, becomes,

Λn =



λn1 0 0 · · ·
0 λn2 0
0 0 λn3
·
·
·


= λn1



1 0 0 · · ·
0

(
λ2
λ1

)n
0

0 0
(
λ3
λ1

)n
·
·
·


→ λn1



1 0 0 · · ·
0 0 0
0 0 0
·
·
·



Thus the system converges to the dominant eigenvector, ~r1 = UT~µ1, and eigen-
value, λ1, independent of the initial starting state. Thus only a single state is
supported in an iterative network with linear neurons. The stability of this state
depends of the sign of λ1. Nonetheless, the essential issue is that neurons that func-
tion as linear transducers can support a single stable state. This can still make these
useful as an integrator, as proposed for a model of the ocular motor system. But
linear networks will not be useful as associative networks that store many patterns.
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Line Attractor Picture of the Neural Integrator 
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Seung Integrator Model (15 neurons)

Death of a neuron!



Stability versus time constant

TC ~ 20 s
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